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Finite Element Technique 
for Optimal Pressure Recovery 

from Stream Function Formulation of Viscous Flows* 

By M. E. Cayco and R. A. Nicolaides 

Abstract. Following a general analysis of convergence for the finite element solution of the 
stream function formulation of the Navier-Stokes equation in bounded regions of the plane, 
an algorithm for pressure recovery is presented. This algorithm, which is easy to implement, is 
then analyzed and conditions ensuring optimality of the approximation are given. An 
application is made to a standard conforming cubic macroelement. 

1. Introduction. The purpose of this paper is to provide a formulation and analysis 
of the stream function approach to the solution of the two-dimensional Navier-Stokes 
equations in polygonal simply connected domains. As with related approaches [2], 
[3], [4], [9], [10], [11], the pressure must be computed separately if it is required, and 
we give a natural algorithm for this purpose. In addition, we prove that the 
computed pressure will be "optimal" in the approximation-theoretic sense, for a 
particular kind of finite element space. Although specific numerical results are not 
given, they have been obtained by the authors and confirm the theoretical predic- 
tions. 

For notation, let Q be a bounded simply connected domain in R2. L2(Q) is the 
Hilbert space of square (Lebesgue) integrable functions with norm 11 0 Il0 and Lo(Q) 
is the subspace of L2(Q) consisting of functions with zero mean. Let Hm(Q) be the 
usual Sobolev space consisting of functions which together with their (distributional) 
derivatives up through order m are in L2(Q). Denote the norm on Hm(Q) by II 11 Im 
Let Hom(Q) be the completion of Co(9) under the 11 rin norm. We equip Hom(Q) 
with the seminorm I Ims which is a norm equivalent to II m Also, the dual of 
Hom(Q) is denoted by H-m(Q), with norm II Il-r Let Hm(Q), (Hom(Q)) be the 
space Hm(Q) x Hm(Q) (Hom(Q) x Hom(Q)) equipped with the following norm 

IlIm= (iiu,1M +II1 U2I) (Iilm = (luilm +IU2I) ) where U2= 

Denote the dual of Hom(Q) by H-m(Q) with norm 11 Il-rn For each Dp E H'(Q), 
define 

~iq- [i] 
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2. Stream Function Formulation. A standard weak form for the stream function 
formulation for 2-dimensional stationary incompressible fluid flow (on a bounded 
simply connected domain) is 

{Find 4 Ee H02 () such that for all X E Ho2 () 

(2 .1) ti vfiz A/PAx + f Ai+(4Y'xx - cxy) = f curl X. 

For brevity, we use the following notations: 

ao(4,X) = J A4'X, 

al(D; 4, X) = f AO(Y~xx - ) 

'(X) = ff * curix. 

Note that 

(2.2) ao(4,X)) <I1021X12 forall4',x(EHo() 

and that there exists a rF > 0 such that 

(2.3) aj(t;4',X)< Fl~LI21'I2IXI2 forallI,4,XEHo2(Q) 

and 1II-2 < I f Il-. The following theorem can be proved using the method of [8]. 

THEOREM 2.1. Let f E H 1(Q) and define 

P* =(rlj, -1)1'2 

Then for any v > v*, (2.1) has a unique solution A. Moreover, 1412 < If II-1/v. 

Let Vh C H02(9) be a finite element trial space. Then to compute approximations 
to A,, we solve for Ah E Vh in the following way: 

(2.4) 
f Find A E Vh such that for all Xh E Vh 

( 
aO(4'h, Xh) + ai(4 h; 4h, Xh) = 1(Xh). 

Existence and uniqueness of the solution to (2.4) for v > v* follow from the fact 
that the properties of ao, a, and 1 used in the proof of Theorem 2.1 are inherited by 
any closed subspace of H02(9). Moreover, I4h 12 < IfII-11/v. We shall make use of 
the following estimate below. From here on, assume v > *. 

THEOREM 2.2. Let 4 be the solution to (2.1) and Ah the solution to (2.4). Then 

(2.5) 1 _A4h 12 < C(V) inf 1 - Xh 12, 
XhE Vh 

where c(v) = (1 + 2rilIf1/v2)(1 - FIIfI-1/v2f1 P c(v*). 

Proof. Since Vh c H02(Q), (2.1) holds for all Xh E Vh. Subtracting (2.4) from (2.1) 
gives 

(2.6) ao(4 - Ah, Xh) + a,(4; 
Xh 

xh) - a(4,h; 4h, Xh) = 0 for all Xh E Vh. 
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Observe that ao is bilinear and a, is trilinear. Also, al(D; 4, X) = -al(t; X, 4) for 
all , 4', X E H02(9). It soon follows that for any Xh E Vh, 

ao(4 - 4h, + - Ah) + a,(4.h - 4; 4, Ah _ 4) 

= a0(4 - Ah 4 - Xh) + a,( ,h; 4h - 4, X - 4) + a,(4 -, 4, Xh ) 

Using (2.2), (2.3), and the fact that a0(X, X) = vlX12 for all X E H2(9), we get 

( - Q0I 2)1,-A 2 < (I + ril F12 + r 12)- 4121 X2 

Since 112 < 1If 111/v and 14,h2 < IlfIl-1/v, the conclusion is immediate. EJ 
Below, we shall provide an algorithm for pressure recovery and an error estimate 

for the particular space Vh c H02(9) consisting of the Clough-Tocher triangles [6]. 
Let {f 29) be a regular triangulation of U. Each macrotriangle Q E- 2h is divided 
into three subtriangles Q1, Q2, Q3 by joining each vertex of Q to its centroid. For 
this element, approximation theory shows [6] 

(2.7) f for each x E H3(Q) n Ho2(9), there exists a Xh E Vh such that 

X- Xh12 < ch2-sIIXII4-s, s = 0,1, 
where the lower value of s assumes the implied extra regularity of X. 

Although we do not make any further use of the following theorem, it is included 
here for completeness. Specifically, we can use a duality argument to get estimates 
for 4' - h lh1 and 114' - h1ll 0. Define the (linear) "dual" problem by: 

f Find D Ee Ho2(Q) such that for all X EHo 
(2.8) Xao(X, ) + al(4; X,) + al(X; 4, t) = (g, X), 

where 4 is the solution to (2.1) and ( , ) is the duality pairing in L2(g). Since 
v > v*, (2.8) is uniquely solvable for g E H-2(g). Moreover, 112 < C11911-2. 

THEOREM 2.3. Assume that 4 Ee H4(Q) n H02(9). Moreover, assume that for each 
g E L2(g), the solution D to (2.8) satisfies 

(*) D ~~~E- H4(Q) n H02(9), Rt114 < Cll 9 ll-2. 

Then there exist positive constants CO, C1, C2 such that 

(2.9) by-A 1 2 C2h2 , 

(2.10) Clh 

(2.11) 1l - _ A Coh4. 

Proof. (2.9) follows immediately from (2.7) and Theorem 2.2. Let X - - 4 in 
(2.8), choose Ah corresponding to D as in (2.7), and use (2.6) to get 

(g, 
4h - 4, = aO( 

- - _h) + al(4; 4h - 4, , - ah) 

+ a, (h _ ; ho _ h) + a,(+ _h +;+ h, 

hence 

(gis,4 
- 

> 4')~~h - 4 
121 

- 

12(v + IN 142 + F1IhA 12) + rli III4 - 

12 

(2.12) < Kh4(|114 +f1og12) < KLOh4)11-2 

-< K, h411 g 11 for g E- L2(o). 
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Let g = -v 4_h); then by (2.12) 

I4+ - 'Phil = (g,4Ah - 4,) 
< 

Kih4I4,h - 'P12 < K2h6 by (2.9), 
hence 

1I - 'hil Ch3 

Now set g = Ah- . By (2.12) we get 

IIjm - fih 112 = (g, Ah 
- 4> 

4 
K1h1|| - 4hIjoj 

and (2.11) follows. El 
We make the remark that (*) will hold if Q is a polygon with maximum interior 

vertex angle 0 < 1260. See [4] for details. 

3. Pressure recovery. We now turn to the important question of pressure recovery. 
Naturally, the momentum equations are used for this. Unlike other treatments, 
however, we shall avoid having to specify the pressure boundary conditions. The 
basic idea is to solve an equation of the form 

-| p divv' = 9(V), 

where g is known. For convenience, let b(vi, p)= -J p div V'. Note that b is 
continuous and coercive on Ho(Q) X Lo(Q) [8, Theorem 3.7, p. 35]. Thus it follows 
from Babuska's theorem [1] that for any g E [HO(0)]', a unique p E Lo(Q) exists 
such that the above equation holds for each vi E- Ho(Q). The term on the right-hand 
side depends on the solution 4 of (2.1), the data f and v, and is given by 

(3.1) g(v) = g(A; f, )(OM) 
= (f, v-) - vbo( cuAi ) - b(cl4, EiT4, v), 

where bo(u, v) = JQ vUi: V1 and b (ui, w, v) = JQ [(- V )WX] V. It follows directly 
from the continuity of bo and b1 (see [8]) that 

LEMMA 3.1. Forf E H 1(Q), 4 Ee H02(9), g as defined above is a bounded linear 
functional on Hd(g). Moreover, for all 4, X E Ho(A), E= E 

g(,;f,)(5) -g(x;fP)(vb) I (P + rIll2 + FllX12)l1- XI2IV-I1. 

Then we have 

THEOREM 3.2. Given E c H2(9), fc HE1(), there exists a unique p E Lo 
such that 

(3.2) b(v-, p) = g(4; f, )(O) for all v E H(g). 

It is the discretization of (3.2) which must be analyzed. The coercivity condition 
does not necessarily hold for arbitrary subspaces Xh C Ho(Q) and Sh C L2(g). 
Also in discretizing (3.2), not only will p and v- be discretized, but so will g, i.e., 
g(4; f, I)(v) has to be replaced by g(4h; f, v)(ih). Since the null space of g(4h; f, v) 
does not necessarily coincide with the discretely div-free functions in Xh, the 
discretized analogue of (3.2) can only hold in some subspaces of Xh. This subspace 
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is generally quite difficult to find. Hence, we introduce the following equivalent 
problem: 

eFind w HJ( ) p e Lo() such that for all v7 E HJ(Q) q e 

(3.3) bbo(w-) 0+ b(vi, p) = g(p; f v)(0) 

b(w,q) = 0. 

(3.3) is uniquely solvable, and by Theorem 3.2, w = 0. We now discretize (3.3) as 
follows: 

fFindiWh e Xh, ph e Sh such that for all jh E Xh, qh e Sh 

) 
- 

b , ( h ) b(iih ph) = g(4,h; f, p)(6h) 

j ) b(wqh) = 0. 

THEOREM 3.3. Let 4 be the solution to (2.1) and 4h the solution to (2.4). Let the 
test space Xh C Ho(9) and the trial space Sh C L2(Q) be chosen such that 

(for every qh E Sh, there exists a &h #0 e Xh such thqt 

(3.5) ( b(v , q ) > ,B| qh 111 v 11 for some 

(positive constant ,B, independent of qh, 6j^. 

Then (3.4) is uniquely solvable and 

V> _ p~.~hIo < c1 inf q |1p - qh jo + C21 - h 12, 
q h G Sh 

where c1, C2 are positive constants independent of p, ph, wh, 4 and 4h. 

Proof. It follows from primitive variable theory that (3.4) is uniquely solvable. 
Subtracting (3.3) from (3.4), we get 

(*) b0(wh, vh) = g(4,h; f i)(iv) - g(o; / P)(6h) - b(6bh ph - 

Since b(wh p) b(Wh q) 0 for allqh e Sh 

I wh 1 i< Kj | - ,h 12 +I|| p - 
h 

where K1 = v + 211f Il/ 2. 
Hence, for any vi E Xh, 

b(&bqh _ ph) = b(6bh,qh _p) + b (v, p -ph) 

b(vh, qh - p) + bo(Wh, vh) + g(14; f P)(jh) - g(4,h; f P)(6h) by (*). 

Using (3.5) we get 

lqh -phIl 1 1 (||qh -p 11 +IWh|1 + -h 1- 12) 

K 1 
(2| Iqh -plo + 2KJ4 - 4h 12), 

hence 

11p - ph 110 < || 
- ph 110 

| - l II~ ~phI~o1Ip - q 1 j PhIq 
K. c, inf || p -q h|jo + C21~ 

- 
+ 12, 

qhw =s 

where cl I + 2/13, c2 = 2K1/13. C3 
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Let {( h} be a uniformly regular family of triangulations of U. For each 9h, 

associate a triangulation 9jh of Q consisting of subtriangles constructed as in 
Section 2. Let 

(3.6) Xh = { j-h E iL(Q) 16h is a continuous piecewise quadratic on yh } 
(3.7) Sh = {qh E L(2(Q) jqh is a piecewise linear function on 9h}. 

To get convergence, it is sufficient to show that the family { XV, Sh } is div-stable, 
i.e., for all Xh, Sh in the family, (3.5) holds with /3 independent of h. This can be 
done using the local test of [5], since the inclusion Sh D {piecewise constants on 
9h } is selfevident. Thus, it suffices to show that { Xh, Sh } is locally div-stable, i.e., 
there exists a c 0 c(h) such that for all Q E 9h- and for all qh E Sh Lo(Q), there 
exists a 6h E Xh n HO(Q) such that 

(3.8) f vibhI2 ^j (qh)2 and jqhdiv 6h>j (qh) 

THEOREM 3.4. { Xh, Sh } is locally div-stable. 

Proof. We shall use the following inequalities: 

(3.9) f |vih1| Clh 2f | h2|for allTe h jj* e Xh, 

(3.10) f jvq h2 < d 
- 2 qh) for all Q E- h qh E Sh 

(3.11) f (qh) < C2h2J IVqhI for all Q E=.2h qh e Sh n L(Q), 
Q ~~~Q 

where C1 and C2 are positive constants independent of h. 
Now, let Q E=,2h and qh E Sh n L2(Q) be given. Let X ,i = 1,2,3, be the 

barycentric coordinates associated with Q, and let Q1, Q2, Q3 e Y'h be such that 
Ui3=1Qj = Q and one edge of Qi lies on Xi = 0, i = 1,2,3. Define P: 2 *Rby 

(3.12) p (3Ai)2 on Qi, 

t0 on 9 \Q. 

Then, a direct calculation shows that for all a, /3 E R, 

(aP) Ef i(Q) n Xh, P = -areaQ p2 1area Q 

Define 6h = - 6C2h2vq P, where C2 is given by (3.11) and P is defined by (3.12). 
Since vqh is constant on Q and P E Hol(Q), it follows that h* E Xh nf HO(Q)Q 
Moreover, 

f 
qhdivv 

-f (Vq ). = 6C2h Ivq |If P 

= C2h21vqh 12area Q > (qh)2. 
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Also, 

J Ivii|I2 Ch 2J j|h12 = 36CC h2IvqhI J P2 

Q = Q-2h vq area Q < C22 (q 15 12 V aea-15 1J 

Thus, the local stability is proved, and so by [5] global stability in the sense of (3.5) 
follows. c] 
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